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Barcelona, Spain

SUMMARY

A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–
Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and
three-dimensional structures. The present implementation follows the classic VOF implementation for the
liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities
and pressure in the gas region near the free surface. The VOF technique is validated against the classic
dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations.
These and a series of other examples demonstrate that the ability of the present approach to simulate
violent free surface flows with strong nonlinear behaviour. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High sea states, waves breaking near shores and moving ships, the interaction of extreme waves with
floating structures, green water on deck and sloshing (e.g. in liquid natural gas (LNG) tankers)
are but a few examples of flows with violent free surface motion. Many of these flows have
a profound impact on marine engineering.
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The computation of highly nonlinear free surface flows is difficult because neither the shape
nor the position of the interface between air and water is known a priori; on the contrary, it often
involves unsteady fragmentation and merging processes. There are basically two approaches to
compute flows with free surface: interface-tracking and interface-capturing methods. The former
computes the liquid flow only, using a numerical grid that adapts itself to the shape and position
of the free surface. The free surface is represented and tracked explicitly either by marking it with
special marker points, or by attaching it to a mesh surface. Various surface fitting methods for
attaching the interface to a mesh surface were developed during the past decades using the finite
element method. In the interface-tracking methods, the free surface is treated as a boundary of the
computational domain, where the kinematic and dynamic boundary conditions are applied. These
methods cannot be used if the interface topology changes significantly, as is contemplated here for
overturning or breaking waves. The second possible approach is given by the so-called interface-
capturing methods [1–13]. These consider both fluids as a single effective fluid with variable
properties; the interface is captured as a region of sudden change in fluid properties. The main
problem of complex free surface flows is that the density � jumps by three orders of magnitude
between the gaseous and liquid phase. Moreover, this surface can move, bend and reconnect in
arbitrary ways. In order to illustrate the difficulties that can arise if one treats the complete system,
consider a hydrostatic flow, where the exact solution is v= 0, p= −�g · (x−x0), where x0 denotes
the position of the free surface. Unless the free surface coincides with the faces of elements, there
is no way for typical finite element shape functions to capture the discontinuity in the gradient
of the pressure. This implies that one has to either increase the number of Gauss-points [14] or
modify (e.g. enrich) the shape-function space [13]. Using the standard linear element procedure
leads to spurious velocity jumps at the interface, as any small pressure gradient that ‘pollutes
over’ from the water to the air region will accelerate the air considerably. This in turn will lead
to loss of divergence, causing more spurious pressures. The whole cycle may, in fact, lead to a
complete divergence of the solution. Faced with this dilemma, most flows with free surfaces have
been solved neglecting the air. This approach neglects the pressure build-up due to volumes of gas
enclosed by liquid, and therefore is not universal. However, in the present case, we have followed
this approach, fully aware of the limitations.

The remainder of the paper is organized as follows: Section 2 summarizes the basic elements
of the present incompressible flow solver; Sections 3 and 4 describe the temporal and spatial
discretization; Section 5 describes the volume of fluid extensions; some examples are shown in
Section 6; finally, some conclusions are given in Section 7.

2. BASIC ELEMENTS OF THE SOLVER

In order to fix the notation, the equations describing incompressible, Newtonian flows in an arbitrary
Lagrangian–Eulerian (ALE) frame are written as

�v, t + �va∇v + ∇ p=∇�∇v + �g (1)

∇ · v= 0 (2)

Here � denotes the density, v the velocity vector, p the pressure, � the viscosity and g the gravity
vector. The advective velocity if given by va = v − w, where w is the mesh velocity. We remark
that both the gaseous and liquid phases are considered incompressible, thus Equation (2). However,
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we will consider compressibility for bubbles, but will treat the compressibility in a global manner.
The liquid–gas interface is described by a scalar equation of the form

�, t + va · ∇� = 0 (3)

For the classic volume of fluid (VOF) technique, � represents the percentage of liquid in a
cell/element or control volume (see References [1, 2, 7–10, 12]). For pseudo-concentration (PC)
techniques, � represents the total density of the material in a cell/element or control volume. For
the level set (LS) approach � represents the signed distance to the interface [11].

Since over a decade [15–18] the numerical schemes chosen to solve the incompressible Navier–
Stokes equations given by Equations (1) and (2) have been based on the following criteria:

• spatial discretization using unstructured grids (in order to allow for arbitrary geometries and
adaptive refinement);

• spatial approximation of unknowns with simple finite elements (in order to have a simple
input/output and code structure);

• temporal approximation using implicit integration of viscous terms and pressure (the
interesting scales are the ones associated with advection);

• temporal approximation using explicit integration of advective terms;
• low-storage, iterative solvers for the resulting systems of equations (in order to solve large

3D problems); and
• steady results that are independent from the timestep chosen (in order to have confidence in

convergence studies).

3. TEMPORAL DISCRETIZATION

For most of the applications listed above, the important physical phenomena propagate with the
advective timescales. We will therefore assume that the advective terms require an explicit time
integration. Diffusive phenomena typically occur at a much faster rate, and can/should therefore be
integrated implicitly. Given that the pressure establishes itself immediately through the pressure-
Poisson equation, an implicit integration of pressure is also required. The hyperbolic character of
the advection operator and the elliptic character of the pressure-Poisson equation have led to a
number of so-called projection schemes. The key idea is to predict first a velocity field from the
current flow variables without taking the divergence constraint into account. In a second step, the
divergence constraint is enforced by solving a pressure-Poisson equation. The velocity increment
can therefore be separated into an advective–diffusive and pressure increment:

vn+1 = vn + �va + �vp = v∗ + �vp (4)

For an explicit (forward Euler) integration of the advective terms, with implicit integration of the
viscous terms, one complete timestep is given by:

• Advective–diffusive prediction: vn → v∗
[ �

�t
− �∇�∇

] (
v∗ − vn

) + vna · ∇vn + ∇ pn =∇�∇vn + �g (5)

• Pressure correction: pn → pn+1

∇ · vn+1 = 0 (6)
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�
vn+1 − v∗

�t
+ ∇(pn+1 − pn) = 0 (7)

which results in

∇ · 1
�

∇(pn+1 − pn) = ∇ · v∗

�t
(8)

• Velocity correction: v∗ → vn+1

vn+1 = v∗ − �t

�
∇(pn+1 − pn) (9)

At steady state, v∗ = vn = vn+1 and the residuals of the pressure correction vanish, implying that
the result does not depend on the timestep �t . � denotes the implicitness factor for the viscous terms
(� = 1: first-order, fully implicit, � = 0.5: second-order, Crank–Nicholson). One can replace the
one-step explicit advective–diffusive predictor by a multistage Runge–Kutta scheme [19], allowing
for higher accuracy in the advection-dominated regions and larger timesteps without a noticeable
increment in CPU cost.

A k-step, time-accurate Runge–Kutta scheme of order k for the advective parts may be written
as

�vi = �vn + �i��t
(
−�vi−1

a · ∇vi−1 − ∇ pn + ∇�∇vi−1
)

; i = 1, k − 1 (10)

[ �

�t
− �∇�∇

]
(vk − vn) + �vk−1

a · ∇vk−1 + ∇ pn = ∇�∇vk−1 (11)

Here, the �i are the standard Runge–Kutta coefficients �i = 1/(k + 1 − i). As compared to the
original scheme given by Equation (5), the k−1 stages of Equation (10) may be seen as a predictor
(or replacement) of vn by vk−1. The original right-hand side has not been modified, so that at
steady state vn = vk−1, preserving the requirement that the steady state be independent of the
timestep �t . The factor � denotes the local ratio of the stability limit for explicit timestepping for
the viscous terms versus the timestep chosen. Given that the advective and viscous timestep limits
are proportional to

�ta ≈ h

|v| ; �tv ≈ �h2

�
(12)

we immediately obtain

� = �tv
�ta

≈ �|v|h
�

≈ Reh (13)

or, in its final form:

�=min(1, Reh) (14)

In regions away from boundary layers, this factor is O(1), implying that a high-order Runge–
Kutta scheme is recovered. Conversely, for regions where Reh = O(0), the scheme reverts back
to the original one (Equation (5)). Projection schemes of this kind (explicit advection with
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a variety of schemes, implicit diffusion, pressure-Poisson equation for either the pressure or
pressure increments) have been widely used in conjunction with spatial discretizations based on
finite differences [20–23], finite volumes [24], and finite elements [15–19, 25–34].

One complete timestep is then comprised of the following substeps:

• predict velocity (advective–diffusive predictor, Equations (5), (10) and (11));
• extrapolate the pressure (imposition of boundary conditions);
• update the pressure (Equation (8));
• correct the velocity field (Equation (9));
• extrapolate the velocity field; and
• update the scalar interface indicator.

4. SPATIAL DISCRETIZATION

As stated before, we desire a spatial discretization with unstructured grids in order to:

• Approximate arbitrary domains, and
• Perform adaptive refinement in a straightforward manner, i.e. without changes to the solver.

From a numerical point of view, the difficulties in solving Equations (1)–(3) are the usual ones.
First-order derivatives are problematic (overshoots, oscillations, instabilities), while second-order
derivatives can be discretized by a straightforward Galerkin approximation. We will first treat the
advection operator and then proceed to the divergence operator. Given that tetrahedral grids solvers
based on edge data structures incur a much lower indirect addressing and CPU overhead than those
based on element data structures [35], only these will be considered.

4.1. The advection operator

It is well known that a straightforward Galerkin approximation of the advection terms will lead
to an unstable scheme (recall that on a 1D mesh of elements with constant size, the Galerkin
approximation is simply a central difference scheme). Three ways have emerged to modify
(or stabilize) the Galerkin discretization of the advection terms:

• integration along characteristics [36, 37];
• Taylor–Galerkin (or streamline diffusion) [26, 38, 39], and
• edge-based upwinding [18].

Of these, we only consider the third option here. The Galerkin approximation for the advection
terms yields a right-hand side of the form

r i = Di jFi j = Di j (fi + f j ) (15)

where the fi are the ‘fluxes along edges’

fi = Si jk Fk
i , Si jk = di jk

Di j
, Di j =

√
di jk di jk (16)

Fi j = fi + f j , fi = (Si jk vki )vi , f j = (Si jk vkj )v j (17)
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and the edge-coefficients are based on the shape-functions Ni as follows:

di jk = 1

2

∫
�
(Ni

,k N
j − N j

,k N
i ) d� (18)

A consistent numerical flux is given by

Fi j = fi + f j − |vi j |(vi − v j ), vi j = 1
2 S

i j
k (vki + vkj ) (19)

As with all other edge-based upwind fluxes, this first-order scheme can be improved by reducing
the difference vi − v j through (limited) extrapolation to the edge centre [35]. The same scheme is
used for the transport equation that describes the propagation of the VOF fraction, PC or distance
to the free surface given by Equation (3).

4.2. The divergence operator

A persistent difficulty with incompressible flow solvers has been the derivation of a stable scheme
for the divergence constraint (2). The stability criterion for the divergence constraint is also known
as the Ladyzenskaya–Babuska–Brezzi or LBB condition [40]. The classic way to satisfy the LBB
condition has been to use different functional spaces for the velocity and pressure discretization
[41]. Typically, the velocity space has to be richer, containing more degrees of freedom than
the pressure space. Elements belonging to this class are the p1/p1+bubble mini-element [42],
the p1/iso-p1 element [43], and the p1/p2 element [44]. An alternative way to satisfy the LBB
condition is through the use of artificial viscosities [15], ‘stabilization’ [45–47] or a ‘consistent
numerical flux’ (more elegant terms for the same thing). The equivalency of these approaches has
been repeatedly demonstrated (e.g. References [15, 35, 42]). The approach taken here is based on
consistent numerical fluxes, as it fits naturally into the edge-based framework. For the divergence
constraint, the Galerkin approximation along edge i, j is given by

Fi j = fi + f j , fi = Si jk vki , f j = Si jk vkj (20)

A consistent numerical flux may be constructed by adding pressure terms of the form:

Fi j = fi + f j − |�i j |(pi − p j ) (21)

where the eigenvalue �i j is given by the ratio of the characteristic advective timestep of the edge
�t and the characteristic advective length of the edge l:

�i j = �t i j

li j
(22)

Higher-order schemes can be derived by reconstruction and limiting, or by substituting the first-
order differences of the pressure with third-order differences:

Fi j = fi + f j − |�i j |
(
pi − p j + li j

2
(∇ pi + ∇ p j )

)
(23)

This results in a stable, low-diffusion, fourth-order damping for the divergence constraint.
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5. VOLUME OF FLUID EXTENSIONS

The extension of a solver for the incompressible Navier–Stokes equations to handle free surface
flows via the VOF or LS techniques requires a series of extensions which are the subject of
the present section. Before going on, we remark that both the VOF and LS approaches were
implemented as part of this effort. Experience indicates that both work well. For VOF, it is
important to have a monotonicity preserving scheme for �. For LS, it is important to balance the
cost and accuracy loss of reinitializations vis a vis propagation. Given that the advection solvers
used are all monotonicity preserving, and that the VOF option is less CPU-demanding than LS,
only the VOF technique is considered in the following. In what follows, we will assume that
� is bounded by values for liquid and gas (e.g. 0���1 for VOF, �g����l for PC) and that
the liquid–gas interface is defined by the average of these extreme values (i.e. �= 0.5 for VOF,
� = 0.5 · (�g + �l) for PC, � = 0 for LS).

5.1. Extrapolation of the pressure

The pressure in the gas region needs to be extrapolated in order to obtain the proper velocities
in the region of the free surface. This extrapolation is performed using a three-step procedure. In
the first step, the pressures for all points in the gas region are set to (constant) values, either the
atmospheric pressure or, in the case of bubbles, the pressure of the particular bubble. In a second
step, the gradient of the pressure for the points in the liquid that are close to the liquid–gas interface
are extrapolated from the points inside the liquid region (see Figure 1). This step is required as
the pressure gradient for these points cannot be computed properly from the data given. Using this
information (i.e. pressure and gradient of pressure), the pressure for the points in the gas that are
close to the liquid–gas interface are computed.

5.2. Extrapolation of the velocity

The velocity in the gas region needs to be extrapolated properly in order to propagate accurately
the free surface. This extrapolation is started by initializing all velocities in the gas region to
v= 0. Then, for each subsequent layer of points in the gas region where velocities have not been
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Figure 1. Extrapolation of the pressure.
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Figure 2. Extrapolation of the velocity.

extrapolated (unknown values), an average of the velocities of the surrounding points with known
values is taken (see Figure 2).

5.3. Keeping interfaces sharp

The VOF and PC options propagate Heavyside functions through an Eulerian mesh. The
‘sharpness’ of such profiles requires the use of monotonicity preserving schemes for advection,
such as total variation diminishing (TVD) or flux-corrected transport (FCT) techniques [35]. Level
set methods propagate a linear function, numerically a much simpler problem. Regardless of the
technique used, one finds that shear and vortical flowfields will tend to smooth and distort �. For-
tunately, both TVD and FCT algorithms allow for limiters that keep the solution monotonic while
enhancing the sharpness of the solution. For the TVD schemes Roe’s Super-B limiter [48] produces
the desired effect. For FCT one increases the anti-diffusion by a small fraction (e.g. c= 1.01). The
limiting procedure keeps the solution monotonic, while the increased anti-diffusion steepens � as
much as possible on a mesh. With these schemes, the discontinuity in � is captured within 1–2
gridpoints for all times. For LS the distance-function � must be reinitialized periodically so that
it truly represents the distance to the liquid–gas interface.

5.4. Imposition of constant mass

Experience indicates that the amount of liquid mass (as measured by the region where the VOF
indicator is larger than a cut-off value) does not remain constant for typical runs. The reasons for
this loss or gain of mass are manifold: loss of steepness in the interface region, inexact divergence
of the velocity field, boundary velocities, etc. This lack of exact conservation of liquid mass has
been reported repeatedly in the literature [5, 11, 49]. The recourse taken here is the classic one:
add/remove mass in the interface region in order to obtain an exact conservation of mass. At
the end of every timestep, the total amount of fluid mass is compared to the expected value. The
expected value is determined from the mass at the previous timestep, plus the mass-flux across
all boundaries during the timestep. The differences in expected and actual mass are typically very
small (less than 10−4), so that quick convergence is achieved by simply adding and removing
mass appropriately. The amount of mass taken/added is made proportional to the absolute value of
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the normal velocity of the interface:

vn =
∣∣∣∣v · ∇�

|∇�|
∣∣∣∣ (24)

In this way, the regions with no movement of the interface remain unaffected by the changes made
to the interface in order to impose strict conservation of mass. The addition and removal of mass
typically occurs at points close the liquid–gas interface, where � does not assume extreme values.
In some instances, the addition or removal of mass can lead to values of � outside the allowed
range. If this occurs, the value is capped at the extreme value, and further corrections are carried
out at the next iteration.

5.5. Deactivation of air region

Given that the air region is not treated/updated, any CPU spent on it may be considered wasted.
Most of the work is spent in loops over the edges (upwind solvers, limiters, gradients, etc.). Given
that edges have to be grouped in order to avoid memory contention/allow vectorization when
forming right-hand sides [50, 51], this opens a natural way of avoiding unnecessary work: form
relatively small edge-groups that still allow for efficient vectorization, and deactivate groups instead
of individual edges [35]. In this way, the basic loops over edges do not require any changes. The
if-test whether an edge group is active or deactive occurs outside the inner loops over edges,
leaving them unaffected. On scalar processors, edges-groups as small as negrp=8 are used.
Furthermore, if points and edges are grouped together in such a way that proximity in memory
mirrors spatial proximity, most of the edges in air will not incur any CPU penalty.

5.6. Treatment of bubbles

The treatment of bubbles follows the classic assumption that the timescales associated with speed
of sound in the bubble are much faster than the timescales of the surrounding fluid. This implies
that at each instance the pressure in the bubble is (spatially) constant. As long as the bubble is
not in contact with the atmospheric air (see Figure 3), the pressure can be obtained from the

Air

Free Surface

Bubble

Figure 3. Bubble in water.
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isentropic relation

pb
pb0

=
(

�b
�b0

)�

(25)

where pb, �b denote the pressure and density in the bubble and pb0, �b0 the reference values
(e.g. those at the beginning of the simulation). The gas in the bubble is marked by solving a scalar
advection equation of the form given by Equation (3):

b, t + va · ∇b= 0 (26)

where, initially, b= 1.0 denotes the bubble region and b= 0.0 the remainder of the flowfield. The
same advection schemes and steepening algorithms as used for � as described above are also used
for b. At the beginning of every timestep the total volume occupied by gas is added. From this
volume the density is inferred, and the pressure is computed from Equation (25).

At the end of every timestep, a check is performed to see if the bubble has reached contact
with the air. This happens if we have, at a given point: b>0.5 and �>�0.5. Should this be the
case, the neighbour elements of these points that are in air are set to b= 1.0. This increases the
volume occupied by the bubble, thereby reducing the pressure. Over the course of a few timesteps,
the pressure in the bubble then reverts to atmospheric pressure, and one observes a rather quick
bubble collapse.

5.7. Adaptive refinement

Adaptive mesh refinement is very often used to reduce CPU and memory requirements without
compromising the accuracy of the numerical solution. For transient problems with moving disconti-
nuities, adaptive mesh refinement has been shown to be an essential ingredient of production codes
[52, 53]. For multiphase problems the mesh can be refined automatically close to the liquid–gas
interface. This has been done in the present case by including two additional refinement indicators
(on top of the usual ones based on the flow variables). The first one looks at the edges cut by
the liquid–gas interface value of �, and refines the mesh to a certain element size or refinement
level [54]. The second, more sophisticated indicator, looks at the liquid–gas interface curvature,
and refines the mesh only in regions where the element size is deemed insufficient.

6. EXAMPLES

6.1. Breaking dam problem

This is a classic test case for free surface flows. The problem definition is shown in
Figure 4(a). This case was run on a coarse mesh with nelem=16562 elements, a fine mesh with
nelem=135869 and an adaptively refined mesh (where the coarse mesh was the base mesh)
with approximately nelem=30000 elements. The refinement indicator for the latter was the
free surface (see above), and the mesh was adapted every 5 timesteps.

Figure 4(b) shows the discretization for the coarse mesh, and Figures 4(c–f) the development
of the flowfield and the free surface until the column of water hits the right wall. Note the mesh
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Figure 4. (a) Breaking dam: problem definition; (b) breaking dam: surface discretization for the coarse
mesh; (c–f) breaking dam: flowfield at different times; and (g) breaking dam: horizontal displacement.
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adaptation in time. The results obtained for the horizontal location of the free surface along
the bottom wall are compared to the experimental values of Martin and Moyse [55], as well
as the numerical results obtained by Hansbo [56], Kölke [57] and Walhorn [58] in Figure
4(g). The dimensionless time and displacement are given by �= t

√
2g/a and � = x/a, where

a is the initial width of the water column. As one can see, the agreement is very good, even
for the coarse mesh. The difference between the adaptively refined mesh and the fine mesh
was almost indistinguishable, and therefore only the results for the fine mesh are shown in the
graph.

6.2. Sloshing of a 2D tank due to sway excitation

This example considers the sloshing of a partially filled 2D tank.
The main tank dimensions are L = H = 1 m, with tank width B = 0.1 m. The problem defi-

nition is shown in Figure 5(a). Experimental data for this tank with a filling level h/L = 0.35
have been provided by Olsen [59], and reported by Faltisen [60] and Olsen and Johnsen [61],
where the tank was undergoing a sway motion, i.e. the tank oscillates horizontally with law
x = A sin(2	t/T ). A wave gage was placed 0.05 m from the right wall and the maximum
wave elevation relative to a tank-fixed coordinate system was recorded. In the numerical sim-
ulations reported by Landrini et al. [62] using the SPH method, the forced oscillation ampli-
tude increases smoothly in time and reaches its steady regime value in 10 T. The simulation
continues for another 30 T and the maximum wave elevation is recorded in last 10 periods of
oscillation.

We followed the same procedure as Landrini et al. [62] in our numerical simulation for
32 cases, which correspond to 2 amplitudes (A= 0.025, 0.05) and 16 periods, ranging from
T = 1.0–1.8 s or T/T1 = 0.787–1.42, where T1 = 1.27 s. When h/L = 0.35 the primary reso-
nances of the first and the third modes occur at T/T1 = 1.0 and 0.55, respectively. The sec-
ondary resonance of the second mode is at T/T1 = 1.28 (see Reference [62]). The present
VOF results for the time history of the lateral force Fx when T = 1.2, 1.3 and A= 0.025, 0.05
are shown in Figure 5(b). The corresponding time history of the wave elevation at the wave
probe A1 (see Figure 5(a)) are shown in Figure 5(c). Some free surface snapshots are shown in
Figure 5(d). The dark line represents the free surface. Note also the ‘undershoots’ in the pres-
sure due to extrapolation. The present VOF results for maximum wave elevation 
 at the wave
probe A1 (see Figure 5(a)) are compared with the experimental data and SPH results [62] in
Figure 5(e) for A/L = 0.025, 0.05. We remark that as the wave inclination close to the wall is
considerable, there is a non-negligible uncertainty in both the experiments and computational
results.

The predicted lateral absolute values of maximum forces are compared with the experimen-
tal data and SPH results [62] in Figure 5(f) for A/L = 0.05 (there is no force data available
for A/L = 0.025). Figure 5(g) shows the comparison of predicted lateral absolute values of
maximum forces for A/L = 0.025, 0.05. It can be seen from Figures 5(e–g) that both maxi-
mum wave height and lateral absolute values of maximum forces predicted by present VOF
method agrees fairly well with the experimental data and SPH results, with a small phase shift
among the three results. Figures 5(b) and (c) are typical time history plots. It should be noted
from these figures that even after a long simulation time (40 periods), steady state results are
not generally obtained. This is due to very small damping in the system. Landrini et al. [62]
noted the same behaviour in their numerical simulations. As a result, the predicted maximum
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(a)

(b)

(c)

Figure 5. (a) 2D tank: problem definition; (b) 2D tank: time history of lateral force Fx ; (c) 2D tank:
time history of wave elevation (probe A1); (d) snapshots of free surface wave elevation for T = 1.3
and A/L = 0.05; (e) 2D tank: maximum wave height (probe A1); and (f,g) 2D tank: maximum absolute

values of lateral force Fx for A/L = 0.025, 0.05.
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Figure 5. Continued.
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wave elevation and the lateral absolute values of maximum forces plotted in Figure 5(e) are
average maximum values for the last few periods for the cases when the steady state is not
reached.

6.3. Sloshing of a 3D tank due to sway excitation

In order to study the 3D effects, the sloshing of a partially filled 3D tank is considered. The
main tank dimensions are L = H = 1 m, with tank width b= 1 m. The problem definition is
shown in Figure 6(a). The 3D tank has the same filling level h/L = 0.35 as the 2D tank. The
3D tank case is run on a mesh with nelem=561808 elements, and the 2D tank is run on a
mesh with nelem=54124 elements. The numerical simulations are carried out for both 3D
and 2D tanks, where both tanks are undergoing the same prescribed sway motion given by
x = A sin(2	 t/T ). The simulations were carried out for A= 0.025 and T = 1.27 (i.e. T/T1 = 1).
The forced oscillation amplitude increases smoothly in time and reaches its steady regime value
in 10 T. The simulation continues for another 70 T. In order to show the 3D effects, the forces
are non-dimensionalized with �gL2b for both 2D and 3D tanks. Figures 6(b) and (c) show the
time history of the force Fx (horizontal force in the same direction as the tank moving direction)
for both 2D and 3D tanks. Figure 6(d) shows the time history of the force Fz (horizontal force
perpendicular to the tank moving direction) for 3D tank. It is very interesting to observe from
Figures 6(c) and (d) that there are almost no 3D effects for the first 25 oscillating periods. The
3D modes start to appear after 25 T, and fully build up at about 40 T. The 3D flow pattern then
remains steady and periodic for the rest of the simulation, which is about 40 more oscillation
periods.

Figures 6(e)–(g) show a sequence of snapshots of the free surface wave elevation for the 3D
tank. For the first set of snapshots (see Figure 6(e)), the flow is still 2D. The 3D flow starts to
build up in the second set of snapshots (see Figure 6(f)). The flow remains periodic 3D for the
last 40 periods. Figure 6(g) show the typical snapshots of the free surface for the last 40 periods.
The 3D effects are clearly shown in these plots.

6.4. Drifting ship

This example shows the use of the present methodology to predict the effects of drift in waves
for large ships. The problem definition is given in Figure 7(a). The ship is a generic LNG tanker,
and is considered rigid. The waves are generated by moving the left wall of the domain. A large
element size was specified at the far end of the domain in order to dampen the waves. The mesh
at the ‘wave-maker plane’ is moved using a sinusoidal excitation. The ship is treated as a free,
floating object subject to the hydrodynamic forces of the water. The surface nodes of the ship
move according to a 6 DOF integration of the rigid body motion equations. Approximately 30
layers of elements close to the ‘wave-maker plane’ and the ship are moved, and the Navier–
Stokes/VOF equations are integrated using the arbitrary Lagrangian–Eulerian frame of reference.
The LNG tanks are assumed 80% full. This leads to an interesting interaction of the slosh-
ing inside the tanks and the drifting ship. The mesh had approximately nelem=2670000
elements, and the integration to 3 min of real time took 20 h on a PC (3.2 GHz Intel P4,
2 GB RAM, Lunix OS, Intel compiler). Figure 7(b) shows the evolution of the flowfield, and
Figures 7(c) and (d) the body motion. Note the change in position for the ship, as well as
the roll.
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Figure 6. (a) 3D tank: problem definition; (b) 3D tank: time history of force Fx for a 2D tank at
A/L = 0.025, T/T 1= 1; (c) 3D tank: time history of force Fx for a 3D tank at A/L = 0.025, T/T 1= 1;
(d) 3D tank: time history of force Fz for a 3D tank at A/L = 0.025, T/T 1= 1; (e) snap shots of the
free surface wave elevation for 3D tank; (f ) snap shots of the free surface wave elevation for 3D tank;

and (g) snap shots of the free surface wave elevation for 3D tank.
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Figure 6. Continued.

6.5. Bubble collapse beneath generic ship

This example shows the use of the present methodology to predict the effects of bubble col-
lapse close to structures. The problem definition is given in Figure 8(a). The ship is a generic
ferry.

The reference values for the bubble, which was located at midship and approximately 4m from
the hull, were set as follows: volume V0 = 128m3, density �0 = 1.25 kg/m3, pressure p0 = 1.0e+
8 N/m2, polytropic coefficient: � = 1.4. The initial radius for the bubble was set to r = 2 m. The
mesh, whose surface is shown in Figure 8(b), had approximately nelem=1530000 elements.
Figures 8(c–g) show the evolution of the flowfield. Note the change of shape for the bubble, first
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Figure 6. Continued.

into a torus and subsequently into a rather complex shape. The pressure recorded at midship on
the hull is shown in Figure 8(h).

7. CONCLUSIONS AND OUTLOOK

A volume of fluid (VOF) technique has been developed and coupled with an incompressible
Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions
of extreme waves and 3D structures. The present implementation follows the classic VOF im-
plementation for the liquid–gas system, considering only the liquid phase. The velocities and
pressure in the gas region near the free surface are obtained via extrapolation algorithms. The VOF
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Figure 7. (a) Ship adrift: problem definition; (b) evolution of the free surface; (c–d) position of centre
of mass; and (e) roll angle vs time.
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Figure 7. Continued.

technique was validated against the classic dam-break problem, as well as series of 2D sloshing
experiments and results from SPH calculations. Other examples presented include a ship drifting
in waves and a bubble collapsing under a generic ship.

When taken together, these recent advances, which include:

• accurate, fast incompressible Navier–Stokes solvers operating on adaptive, unstructured grids;
• robust volume of fluid (VOF) techniques for free surface flows;
• deactivation techniques to speed up calculations; and
• extensive parallelization of solvers

have made it possible to simulate flows with violent free surface motion with a high degree
of accuracy, allowing decision-making based on them. Like every human endeavour, numerical
algorithms are subject to continuous improvements. Present research is directed at the proper
treatment of

• surface tension;
• incoming and outgoing waves for 3D VOF-based free surface flows;
• free surface wall boundary conditions for RANS, NS cases (i.e. those cases where the velocity
at the wall v= 0); and

• multiple bubble interaction (splitting, merging, etc.).
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Figure 8. (a) Bubble collapse: problem definition; (b–g) surface mesh and evolution of bubble; and
(h) pressure and impulse recorded at midship on hull.
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